Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Comput Biol Chem ; 102: 107796, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36495748

RESUMO

Epigenetic mechanisms leading to transcriptional regulation, including DNA methylation, are frequently dysregulated in diverse cancers. Interfering with aberrant DNA methylation performed by DNA cytosine methyltransferases (DNMTs) is a clinically validated approach. In particular, the selective inhibition of the de novo DNMT3A and DNMT3B enzymes, whose expression is limited to early embryogenesis, adult stem cells, and in cancers, is particularly attractive; such selectivity is likely to attenuate the dose limiting toxicity shown by current, non-selective DNMT inhibitors. We use molecular dynamics (MD) based computational analysis to study known small molecule binders of DNMT3A, then propose reversible, tight binding, and selective inhibitors that exploit the Asn1192/Arg688 difference between the maintenance DNMT1 and DNMT3A near the active site. A similar strategy exploiting the presence of a unique active site cysteine Cys666 is used to propose DNMT3A-selective irreversible inhibitors. We report our results of relative binding energies of the known and proposed compounds estimated using MM/GBSA and umbrella sampling (US) techniques, and our evaluation of other end-point binding free energy calculation methods for these receptors. These calculations offer insight into the potential for small molecules to selectively target the active site of DNMT3A.


Assuntos
DNA Metiltransferase 3A , Neoplasias , Adulto , Humanos , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA , DNA Metiltransferase 3A/antagonistas & inibidores , Metionina/genética , Metionina/metabolismo , Neoplasias/genética , Racemetionina/metabolismo , S-Adenosilmetionina/metabolismo
2.
Bioorg Med Chem Lett ; 40: 127908, 2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-33705897

RESUMO

Screening of a small chemical library (Medicines for Malaria Venture Pathogen Box) identified two structurally related pyrazolone (inhibitor 1) and pyridazine (inhibitor 2) DNMT3A inhibitors with low micromolar inhibition constants. The uncompetitive and mixed type inhibition patterns with DNA and AdoMet suggest these molecules act through an allosteric mechanism, and thus are unlikely to bind to the enzyme's active site. Unlike the clinically used mechanism based DNMT inhibitors such as decitabine or azacitidine that act via the enzyme active site, the inhibitors described here could lead to the development of more selective drugs. Both inhibitors show promising selectivity for DNMT3A in comparison to DNMT1 and bacterial DNA cytosine methyltransferases. With further study, this could form the basis of preferential targeting of de novo DNA methylation over maintenance DNA methylation.


Assuntos
DNA (Citosina-5-)-Metiltransferases/antagonistas & inibidores , Inibidores Enzimáticos/química , Pirazolonas/química , Piridazinas/química , Bibliotecas de Moléculas Pequenas/química , Azacitidina/farmacologia , Domínio Catalítico , DNA/metabolismo , Metilação de DNA/efeitos dos fármacos , DNA Metiltransferase 3A , Decitabina/farmacologia , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/farmacologia , Humanos , Ligação Proteica , Bibliotecas de Moléculas Pequenas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...